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Abstract

An operations research study is conducted concerning

inventory behavior on the Space Station. Historical data

from the Space Shuttle is used. The results demonstrate a

high logistics burden if Space Shuttle reliability

technology were to be applied without modification to

Space Station design (which it will not be). Effects of

rapid resupply and on board repair capabilities on

inventory behavior are investigated.

Introduction

"Adde parvum parvo magnus acervus erit."

"Add little to little, and there will be a great pile."

Ovid, ca. 50 A. D.

Intuition is linear and works best on small systems.

Large systems with additive effects are not easy to

understand. They produce surprises, like Ovid's pile.

Large systems with nonlinear components and additive

effects are worse: they produce shocks. These systems

cannot be intuitively understood. They must be

mathematically understood, or not understood at all.

Inventory systems are nonlinear in important ways, and

they are additive as well. This report describes an

operations research study of local inventory required to

support remote site operations. The study attempts to

quantify inventory requirements for generic remote site

operations in such a way as to anticipate the order of

inventory demands early enough to permit their

incorporation into the design process.

As a test case, historical data from Space Shuttle

operations is used. This data was very kindly provided by

Rockwell International, which deserves much of the credit

for the usefulness of these results. In some ways, Space

Shuttle data is not appropriate for remote site modeling,

in that the Shuttle was designed for ground maintenance

after each 1 week mission, whereas the Space Station will

never receive ground maintenance, and has a 30 year design

life. However, Space Shuttle module reliability was

probably increased to the limits of cost effectiveness for

1970 era technology in an attempt to reduce maintenance

costs and.increase vehicle availability. Also, it is

tempting to rely on proven Space Shuttle technology when

designing the Space Station. The analysis does not show

how Space Station inventory will behave. It does show how

Space Station inventory would behave i_f Space Station

technology had the same overall failure rate and repair

time distribution as Shuttle technology, which it most
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certainly will not.

More significant than the actual numbers is the
demonstration that inventory stockouts (that is,
exhaustion of inventory for some classes of modules} will
always be a factor. If there is a module failure, and no
modules of that type are in inventory, there are three
courses of action: I} ignore the failure, 2) repair an
already failed module, or 3) get a replacement module by

extempore resupply. If the failure is in a redundant

system, option (1} may be attractive. If not, (2) or (3)

will be the options of choice. The results of this

analysis strongly suggest that (2) and (3) will both be

desirable during Space Station operations, as they are at

any remote site operation.

It is discovered on analysis of Space Shuttle

operations records that systems comparable to the Space

Shuttle require unexpectedly large inventory for long

missions. It is further discovered that, even with a

fairly large spares inventory, shortages will occur at a

significant rate. Makeup of these shortages, either

through repair and improvisation, or through special

equipment delivery, may be a significant problem in space

station and planetary expedition logistics.

The mathematics, the data, the analyses, and the

conclusions are described separately to permit replication

by the interested reader. A reader not interested in

replication or time consuming development of mathematical

intuition in this area may skip to the results section.

Mathematical Approach

The techniques used are elementary. Elementary

statistical methods are to be preferred over advanced

methods on grounds of clarity if they correctly model all

significant aspects of a situation. The approach

described below is correct in the sense that it provides

an estimate of stockout probability distribution

parameters which is moderately reliable and can be shown

on theoretical grounds to be insensitive to actual item

failure distributions, which are not ordinarily known. I

make no claims to the method's optimality if actual item

failure distributions are known exactly.

The statistical method used to set inventory stock

levels and predict number of stockouts is developed below:

1) Independent actors, each performing the same act

with an idiosyncratic distribution of times between

performance, will as a whole perform the act with a

negative exponential distribution of times between
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performance. For example, each person in a dialing area

makes telephone calls on an individual basis. The time

between calls for any individual is a random variable, and

the distribution with which this variable is associated

will, in general, vary from one person to the next. That

is, each person's time between calls will have an

associated and unique, or idiosyncratic, distribution. If

calls made by all people in the dialing area are observed

(by monitoring call arrivals at the telephone exchange),

it will be observed that the time between arrival of new

calls will behave llke a random variable with a negative

exponential distribution. The same argument holds true

for arrival of customers at a bank, arrival of cars at a

gas station, or "arrival" of equipment failures. The

density function for a negative exponential distribution

is:

f(Lambda, t) := Lambda * exp(-Lambda*t)

"Lambda" is the average arrival rate, in events�unit time.

"t" is the time between events. It is obtained by adding

up individual arrival rates for all independent actors.

The average time between arrival is, of course, I/Lambda;
the variance in time between arrivals is 1/(Lambda^2).

Thus, high rates of arrival give a smaller variance in

interarrival time than do large rates. That is, the

process varies more at low arrival rates than at high.

2) Any process with density function f(Lambda, t) of

interarrival time will have a Poisson distributed number

of events per unit time. That is, if instead of observing

time between events, one counts events per unit time, one

will find that the number of events per unit time is

Poisson distributed if and only if the time between events

has a negative exponential distribution f(x).

The Poisson distribution is as follows:

P(Lambda, N):= exp(-Lambda)*(Lambda^N)/N!

"Lambda" is defined as before (and is indeed identical to

the Lambda for f(Lambda, t) ). Lambda is also the mean and

variance of P(Lambda, N). Note that variance of

P(Lambda, N) increases with increased Lambda, whereas that

of f(Lambda, t) decreased under the same condition. The

higher the arrival rate, the more variance, hence the more

spread in observed number of arrivals over several

observations. "N" is the number of events. Note that N

is a cardinal number, that is a member of the set

{0,1,2,...}. N cannot be 3.5, or -2, as these cannot

count events. This will cause certain minor problems

later, and has the immediate consequence that P(Lambda, N)

is not a density function, but rather a distribution. In

general, the probability of N failures per unit time will
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be given by P(Lambda, N).
recursively as:

The above can be re-written

P(Lambda, O):= exp(-Lambda)

P(Lambda, N):= P(Lambda, N-l) * Lambda/N

The behavior of the function P(Lambda, N) as expressed

recursively is clear. If Lambda>l, it P(Lambda, N)

increases until N>Lambda, then decreases. If Lambda<i,

P(Lambda, N) always decreases. Note that P(Lambda, N) is

always positive and finite, as one would expect a

probability to be.

3) In planning for inventory, one might be interested in

having Just enough inventory to avoid stockout. That is,

one wants to have enough in inventory so that one never

runs out, and at the same time wants nothing superfluous

in inventory so that one does not waste money. This is

impossible, as will be shown.

If failures are Poisson distributed, then the

probability of having N failures or less is given by the

cumulative Poisson distribution,

C(Lambda, N) := sum(O,N,P(Lambda, N))

Obviously, the probability of covering all failures when

there are N items in inventory and Lambda is constant is

just C(Lambda, N). By the same token, the probability of

stockout must be l-C(Lambda, N).

The behavior of 1-C(Lambda, N) is therefore of

interest. Let us re-write:

l-C(Lambda, N) = sum(N+l, infinity, P(Lambda, N))

and we have seen above that P(Lambda, N) will be finite

(although possibly very small) for all cardinal numbers N.

From this it is apparent that l-C(Lambda, N) will

always be finite, no matter how large N, and that

(accordingly) there is always some probability of

stockout, no matter how large N, the number of replacement

units in inventory.

4) Fortunately, the above is not merely an impossibility

proof. It also leads to an algorithm for sizing

inventory. If one is satisfied with a fairly small

desired probability of stockout per mission, Psd, then, if

Lambda per mission is known, one need only specify an N

large enough such that:

l-C(Lambda, N) < Psd and l-C(Lambda, N-l) > Psd
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N is the smallest number of items which can be kept in
store if Psd is to be met. N is uniquely specified by

this algorithm, which may be written as N(Psd). The

actual probability of stockout is, of course,

Psa:= 1-C(Lambda, N(Psdl)

Lambda for the mission is Lambda per unit time multiplied

by number of units of time per mission. Note that, in

general, Psa < Psd. This is a result of N being a

cardinal number, and is the inconvenience mentioned above.

The probability of 1 stockout is P(Lambda, N+11, the

probability of 2 stockouts is P(Lambda, N÷2) and so on.

The expected number of stockouts for the entire mission is

thus E(s):= sum(n=N,n=infinity, P(Lambda, n)). Ordinarily

only a few terms of this sum must be calculated before

P(Lsmbda, n) becomes negligible.

51 One must somehow specify Psd. For inventories

containing only one kind of item this is simple. One
defines a cost function Ma(N(Psd)) and minimizes it. For

inventories containing several noninterchangeable classes

of items, each with its own PsaJ (j being an index

describing the kind), but supporting a single system (such

as the Space Station), this procedure is not satisfactory.

The cost function is properly a function of system

reliability, which is a function of subsystem reliability,

which is in turn a function of the number of working

modules within each subsystem, which is decreased by each

stockout. While the PsaJ must obviously meet certain

criteria, because these criteria are dependent on the

criticality of the subsystem supported by units of kind J,

there emerges an additional, system wide, criteria: the

total number of stockouts during a mission (TSM). If j is

over about I0, one would expect system degradation and a

TSM nonlinearly related to the Psaj.

6) By the reasoning in (11, the random variable

representing time between stockouts for the inventory as a

whole should have a negative exponential distribution.

TotalLambda should have a value equal to the sum of the

hazard rates over all classes in inventory. The hazard

rate for each kind in inventory over the entire mission is

the expected value of stockouts the kind, E(sj). That is,

TotalLambda:= sum(all J, E(sj))

7) Given the distribution types, and TotalLambda, one can

calculate probability of having N or fewer stockouts per

mission by the cumulative Poisson as above:

C(-TotalLambda, N)
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This can be used to calculate a range of stockouts most
likely to be seen. We assume that things which happen
less than 5% of the time are often not seen; thus, the
smallest N seen would be Nsmall such that

C(TotalLambda, Nsmall-l) < 0.05
and

C(TotalLambda, Nsmall) > 0.05

Similarly, the largest N seen would be Nlarge such

that

C(TotalLambda, Nlarge-l)<0.95
and

C(TotalLambda, Nlarge)>0.95

These are approximations, of course, and merely show

that one has at least a 5% chance of seeing Nsmall or less

and at most a 5% chance of seeing Nlarge or more.

That is a narrative description of the technique.

Perhaps it should be illustrated graphically.

The inventory of one kind of unit could be sized by

drawing its Cumulative Poisson [C(Lambdaj, N)], and using

the curve to translate Psd into minimum N as in Graph A,

which looks like a flight of stairs. It is obvious that

increasing the number of units in stock from 3 to 4 will

reduce Psa to below the 5% minimum specified.

By the same token, given TotalLambda for the completed

inventory, stockouts could be determined by drawing its

Cumulative Poisson [C(TotalLambda, N)], as in Graph B, and

using the curve to translate probabilities of .05 and .95

into numbers of stockouts as shown. Again, it is obvious
that the 5% limits o_ observation lle somewhere around 33

and 55.

Buried in the above analysis is the assumption that

stockout hazard rates are constant. In fact, they

increase as stock on hand is consumed. In the normal

Space Station case, inventory will not be severely

depleted during the mission. Perhaps half of it will be

used up, and perhaps 1.5% of the inventory classes by

module kind will have stockout. One could therefore

confidently predict an increase in stockouts during the

latter part of a mission. Unfortunately, there seems to

be no easy way to solve analytically for stockout

distribution as a function of time, and simulation would

be necessary to determine this distribution. The

distribution given is a valid average distribution for the

mission; one would expect the lower limit to be more

18-7



C u nl_',.-, I S $ 0 r,

._c

°°,°.°***.**.

o 148

t _
• 000 C |

_ '_ _ I
L j _ 5- 6. oo

C:LIST. L I rlt |

Lzst of fu_ct I0_ values.

C Um6;*¢, 1 SSC, n

CumPolsson(x)
.188_4707

.50261967

.76512079

.91124641

.97225386 _--

.99263035 _--

.99830180

.00000000

1.0000000

2.0000000

3.0000000

4.0000000

5.0000000

6.0000000

Col 1 Ir,ser'_ Indent Tab

18-8



iIf*;_'O I SSC+r=

I. _5

Q.

o5oo 3% 33
5_ 55"

**oo.o.•.°.•******°°•*•.*+*

I
90.0

List of function values•

Curn_'olsson

30.000000

31.000000

32.000000

33.000000

34.000000

C_mPOlSSO_(x)

.020759638

.030820003

• o+4+5+6o_p,.9.._ff_
Oma373491B ,,"

.085230079

List of function values.

CumPoision

N

52.000000

53.000000

54.000000

55.000000

56.000000

CumPoisson(x)

.91406a14

.93423665

963207PS-,0

•97309883

18-9



typical of the mission's early part and the upper limit

more typical of the mission's later part. Again,

simulation is necessary to if the distribution is to be

numerically specified as a function of time.

Data

Two kinds of data can be used. The first set is for

initial sizing studies, and is approximate. A uniform

MTBR (Mean Time Between Removals) of 8 000 hours,

MTTReplace (Mean Time To Replace) of 4 hours, MTTRepair

(Mean Time To Repair) of 80 hours, and average commonality

of 2 items per type are reasonable starting values.

Historical data on Shuttle subsystem characteristics

was provided by Rockwell International. The data set used

was the Logistics Master Control File, Report No. 9100, as

of 07/13/87. Only QPEI / WUC, MDR, and MTBF data were

used. QPEI / WUC (Quantity Per End Item) is the number of

the item per individual OV. MDR (Maintenance Demand Rate)

is number of unexpected removals per each I000 hours of OV

operation. Therefore, MTBR (Mean Time Between Removals) =

IO00/MDR. MTTRepair (Mean Time To Repair) is the actual

time on the repair bench required to restore a removed

module to fully tested and operational status. RTAT is

the number of hours including handling required for module

repair. Generally, RTAT>>MTTRepair. Since handling in

the sense of transport to repair facilities will not be a

major factor at a remote site, RTAT was not used in the

analysis. MTTReplace (Mean Time To Replace) was

arbitrarily set to 4 hours.

There are 2763 classes of modules in Report No. 9100.

Since STOCK2 accepts only 400 module types, some data

selection and trimming was necessary.

The first decision was to use only data with MTTR

specified. Of 2763 classes, only 1702 (62%) specified

MTTR. A t test (see discussion and Table, below)

conducted on hazard rate and population supported per

class showed no reason to reject the hypothesis of equal

means, so the subset was accepted as representative. This

subset will be called "MTTR Subset".

The second decision was to select a random subset of

MTTR specified data. This involved writing a program

(RAND) to generate 400 random numbers sorted in increasing

order over a range equal to the cardinality of MTTR

Subset. These numbers were treated as indices specifying

a second subset of MTTR Subset, called Subset A (which

accordingly has 400 classes). A t test (see discussion
and Table below) conducted on hazard rate, population

supported per class, and mean time to repair showed no

reason to reject the hypothesis of equal means, so the

subset was accepted as representative. Subset A was
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actually used in analyses. It would be desirable to
conduct these analyses with a Subset B, C, etc., but time
did not permit this.

Statistical characteristics of the data are as
follows:

Reciprocal Sample
Data Average Standard

Set Hazard Rate Deviation

Complete

MTTR>O

Not given

Subset A

8291 hr 8286 hr

8264 hr 8264 hr

8333 hr 8321 hr

7231 hr 7231 hr

Data
Set

Complete

MTTR>O

Not given

Subset A

Average
MTT Repair

Sample
Standard
Deviation

51 hr 253 hr

82 hr 3i8 hr

N/A N/A

93.3 hr 348 hr

Data
Set

Complete

MTTR>O

Not given

Subset A

Average Sample
Population Standard
Per Class Deviation

I 1.74 2.62
I
f 1.85 2.91I
I..................................................................................

I

t 1.55 2.071.91 3.04 I

Note: Total population for any data set can be obtained by

multiplying Average Population per Class by Number of

Classes.
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Complete

and

MTTR Subset

MTTR Subset

and

Subset A

Hazard MTT Population

Rate Repair Per Class

t= 4.72E-4

Nu= 5.9E23

t= 0.825

Nu= 9.5E21

t= 3.41

Nu= 3.0E3

t= 0.594

Nu= 570

t= 1.27

Nu= 1.2E8

t= 0.360

Nu= 1.5E6

For the Nu values given, the t random variable is

distributed normally for all practical purposes. A

t<1.282 implies acceptance of the null hypotheses (that

data set means are equal) on the 10% level.

The final table, listing t statistics, suggests that the

MTTR Subset is very similar to the complete data set

except, of course, in MTTRepair. The MTTR Subset and

Subset A appear alike for all data types. Accordingly,

the behavior of inventory for Subset A should

statistically resemble that of the MTTR subset for all

data types, and should statistically resemble that of the

complete data set for all data types except MTTRepair.

Subset A is stored under file name STOCK2. STK on

floppy disk, and will be included with STOCK2. Use

STOCK2's export feature to change STOCK2. STK into

STOCK2. ASC, which can be imported by a database program as
a standard ASCII file with comma as delimiter.

Software and Computer

The software and hardware used are commonly available;

those readers wishing to check or extend results may

obtain a copy of the software and data on request to the

author, if said request is accompanied by a 5 I\4 inch

MS-DOS floppy diskette, formatted for a 360k drive. The

program is written in Turbo Pascal, and it is advisable to

use a database program, such as Borland's Reflex, for data

analysis. It should run on any MS-DOS machine.

Stock2R. com does not require a mathematics coprocessor,

Stock2X. com does. The program is written in Turbo Pascal,

by Borland International, and you will need a compiler for

this language should you wish to modify and re-compile the

program. Please use STK2R or STK2X to install the program

if its messages are not properly displayed on your

terminal screen. Instructions for the STK2 programs are

in document INSTALL. TXT.

A program to generate random numbers uniformly

distributed over a specified range is included as RAND and
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RANDX. Again, the X suffix means a mathematics
co-processor is necessary. Installation is by RND and
RNDX. The source file is provided, but requires sort
procedures from Borland's Turbo Toolbox to compile.

A random subset of 400 module descriptions from the
Space Shuttle's operating history is on the diskette as
STOCK2.STK. It is suggested that this information (which
includes output data) be imported to STOCK2 by the "typed
file m initialization option. Detailed analysis of the
results should by choice be attempted with the help of a
good database program, as 400 items are too many for the
crude display facilities in STOCK2. After alteration by
the database program (Reflex by Borland may be a good
choice) the data can be re-imported to STOCK2. Use comma
as the delimiter.

Although hazard rates scale linearly, confidence

limits do not. Accordingly, a program, called LIMITS. com,

has been provided to scale the results of STOCK2 up or

down. To obtain confidence intervals for a target

installation, such as the Space Station, scale up the

global hazard rates from Stock2 by:

TargetLambda=

Stock2Lambda * TargetModuleNumber/Stock2ModuleNumber

with Stock2Lambda and Stock2ModuleNumber being the values

from Stock2, and TargetLambda and TargetModuleNumber being

the values of the target installation. For example, if

Stock2 gives a repair Lambda of 3.16 for 400 classes of

modules with an average of 1.91 modules / class and the

Space Station is assumed to have 2578 modules, then the

repair hazard rate for the Space Station is:

3.16-2578/(400-1.91) = 10.7

To obtain Space Station confidence intervals, run LIMITS

and specify a hazard rate of 10.7. Use the same scale

factor for inventory.

Methods of Analysis

Item demand will change as the population of supported

modules ages. If MTBF only changes by a few percent

within an inventory period, this can be treated by setting

MTBF to the average for the period in question.

Calculations involving multiple periods use the

appropriate average MTBF for each period. For the

purposes of this report, a constant MTBF is the

appropriate choice.
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A rough feel for this class of inventory problem can
be acquired using Borland's Eureka, and interactive
equation solver described under "Software and Computer."
The algorithm above can be implemented quite directly, and
run for simple cases. In particular, it is possible to
graphically illustrate the relation between the Poisson
and Cumulative Poisson distributions for various values of
hazard rate, and to develop one's intuition for stocking
levels and stockout probabilities.

In general, one finds that (a) stock levels increase

nonlinearly as probability of stockout decreases and that

(b) number of modules in inventory divided by number of

modules in use tends to decline as population supported

increases. The results of such investigations are not

reported here, as they are not based on historical data.

When one wishes to use non-aggregated historical data,

the sheer mass of computation involved overtaxes Eureka,

and a specialized program must be used. This program

permits direct entry of equipment characteristics, and

executes the mathematical approach described above to

determine replacement and stockout hazard rates for each

kind of equipment and globally, for the entire inventory.

This program, STOCK2, was used to conduct the following

preliminary analyses:

le Inventory behavior under varying uniform stockout

probabilities.

Specified probability of stockout for all parts types

are set to a uniform value for each run. Inventory size,

repair event hazard rate, and 90% confidence interval for

number of repair events are calculated.

. Effect of provision for module repair /

cannibalization on inventory behavior and crew size.

Probability of exhaustion is set independently for

each part type so as to minimize stockout probability for

part types with large repair times, and inventory level is

kept constant by increasing stockout probability for part

types with small repair times. The net result is to keep

inventory size approximately constant while decreasing

time required to repair or cannibalize failed modules.

After establishing a set of probabilities at average

specified probability of stockout of 0. I, probabilities

were linearly transformed to obtain other average

specified stockout probabilities, and the effect of this

on repair time and inventory stock level were recorded.

3. Effect of mission length on inventory behavior.

Longer and shorter mission times are considered with

fixed average specified stockout probability. The
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shortest time is the length of a Space Shuttle mission;
the longest is about that of a round trip Mars mission.
The behavior of inventory at an average specified stockout
probability of 0.01 is considered.

4. Effect of commonality on inventory behavior.
Greater commonality was simulated by multiplying

population supported in Subset A by 5 and by I0, then
scaling all results up to the same Space Station number of
modules.

There was not sufficient time to conduct these
analyses thoroughly. It is likely that only the stronger
effects were discovered, and that many weak effects remain
as yet unknown.

Results

General:

Space Station is assumed to have 2578 DRUs at 1.91
ORU/Class, for a total of 1350 classes.

On at most 5% of the missions values will exceed the
Upper Limit; on at least 5% of the missions values will be
below the Lower Limit; the two limits thus form an
approximate 90% confidence range. An exact 90% confidence
range cannot be specified for events, as they cannot be
subdivided.

I. Inventory behavior under varying uniform stockout

probabilities.

Specified

Probability Inventory
of Stockout Size

f

1.00 I 0

0.316 I 967

o. oo I

0.0316 } 21100.0100 2800

L__

Stockout Number of Stockouts

Hazard Lower Upper
Rate Limit Limit

853

155

51

| ..................

806 I 901
135 176

18 12 26

5.2 2 9
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2. Effect of provision for module repair /

cannibalization on inventory behavior and crewsize.

Specified

Probability

of Stockout

1.00

0.316

0.100

0.0316

0.0100

Stockout Number of Stockouts

Inventory Hazard Lower Upper

Size Rate Limit Limit

0 853 806 901

102 85 1191400

1910 46 35 57

2390 18 11

3150 4.0 1 8

25 ¸

Specified

Probability

of Stockout

1.00

0.316

0. I00

0.0316

0.0100

Repair Number of

Average Hours Repair Hours

Crew on Hazard Lower Upper

Repair Rate Limit Limit

123 88200

5.9 4220

1.6 1150

O. 52 421 388

87700 88700

4110 4320

II00 1210

455

139
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3. Effect of mission length on inventory behavior.

These calculations use data optimized for repair, as

given in STOCK3. STK. Average specified probability of

stockout is slightly less than 0. I.

Mission Stockout Number of Stockouts

Length Inventory Hazard Lower Upper

(Days) Size Rate Limit Limit

7

14

90

270

900

347 10.6 6 16

542 15.7 9 22

1930 44.0 33 55

2560 72.0 58 86

12100 97.5 82 i14

Mission

Length

(Days)

7

14

90

270

900

Repair Number of

Average Hours Repair Hours

Crew on Hazard Lower Upper

Repair Rate Limit Limit

9.5

5.9

1.6

530

658

III0

492

617

1060

•568

701

1170

0.9 1910 1830 1980
l
I

0.4 2660 2580 2750

4. Effect of commonality on inventory behavior.

Commonality

1.91

9.55

19.1

Replacement Stockout

Event Event

Inventory Hazard Hazard

Size Rate Rate

1930 855 44

1350 852 15

1270 852 13
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Discussion

As can be seen, there is significant intuitive content
to the mathematical treatment:

I) Hazard rates are additive.
2) Inventory levels are nonlinear with protection.

High protection from stockouts requires a big inventory.
Perfect protection requires an infinite inventory.

3) Moderate protection can be accomplished with a much

smaller inventory.

4) If there are a large number of separate

inventories, the hazards from "moderate protection" add up

to significant numbers of observed stockouts.

Mathematical technique, in this case, becomes most

interesting when applied to the interpretation of

historical data. The intuitive content requires scaling;

are we talking about an inventory of 100 or 1,000,000?

Will we run out of stock for I or 100 items? Historical

data for the Space Station is nonexistent; it has not been

built. Let us suppose, however, that the Space Station

was to be built using the same general order of

reliability as the Space Shuttle. This is unlikely, but

makes an interesting test of the mathematics, and gives us

some idea of the changes in Shuttle era technology

required to make a logistically tractable Space Station.

Inventory behavior under varying uniform stockout

probabilities is as expected. Stockout hazard rate

decreases nonlinearly as specified probability of

exhaustion increases. Inventory size increases

exponentially with specified probability of exhaustion.

In practice, an inventory size of 2800 supporting 2578

running might be chosen to ensure that there will usually

be fewer than 9 uncorrected failures per 90 day mission.

This is about one item in inventory for each item running.

The effect of provision for module repair and

cannibalization is to trade inventory volume for labor.

If one is willing to devote the labor of 1.6 people in

orbit, inventory can be reduced by 886 modules, from 2800

modules to 1914 modules, and number of uncorrected

failures reduced from a maximum of 9 to a maximum of 0.

This requires a distortion of inventory policy, however,

in that one must stock more of the high repair time

modules and fewer of the low repair time modules to obtain

the low average repair time which makes on orbit repairs

feasible. If only 0.52 people work on repairs, inventory

size is reduced only by 411 modules, and assigning 0.17

people actually increases inventory by 351 modules.

Increased mission length, or time between resupply,

tends to increase inventory. Accordingly, a doubling of

the Space Station's mission from 90 to 180 days would be
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expected to increase its required inventory.
Unfortunately, not enough points could be taken in the
available time to quantify this effect reliably. The
algorithm would have to be rewritten so as to keep
stockouts/unit time constant (assuming repair) or to keep
total stockouts constant (assuming no repair or on demand
resupply). However, it is clear that increasing mission
length while keeping specified probability of stockout
constant will produce significant increases in inventory
levels. The 900 day mission requires 4.7 items in
inventory for every item running.

The mission length data provides a reality check of
the data and mathematics. The predicted removal hazard
rate for the Shuttle is 136 removals/mission (90%
confidence interval of 117 to 155), whereas Rockwell's
data indicate that there are actually 224.5
removals/mission during ground reconditioning. Since not
all of the actual removals are for unexpected faults, the
prediction seems reasonable.

Specified probability of stockout (SPS) was kept constant
for all mission lengths. The effect of SPS is to set a
global upper limit on number of stockouts. During the
short mission, many of the more reliable modules will not
fail, so that the actual probability of exhaustion for
that module time will be much less than the SPS for that
type, and the global limit will not be approached. As the
mission grows longer, the difference between SPS and
actual probability of exhaustion diminishes, and the
global upper limit is more closely approached. For
example, the results listed show a global stockcut hazard
rate increasing from 10.6 to 97.5. The interesting side
effect is that the increase is not linear. That is, the
number of stockouts per day becomes less as the mission
gets longer, and fewer people are required to repair
failures. This suggests that failure repair may be a more
attractive option as missions grow longer. Alternatively,
by devoting more crew to repair activities, inventories
shown might be substantially reduced.

The effect of commonality on inventory behavior is to
decrease inventory. While only three points were taken,
they suggest that inventory size can be reduced by a
maximum of about a half by increasing commonality. It is
not clear to what extent commonality can be increased.

Operationally, the above shows conclusively that the
Space Station (and other remote site bases) cannot be
built under the same design philosophy as the Space
Shuttle. The Space Station has a 30 year design life, and
does not visit a refitting base. It i_ssthe refitting
base. Accordingly, it must be kept operational on a
continuing basis.
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Achieving this will clearly require significant
attention to module reliability, repairability, and on
demand resupply. Modules must be more reliable to reduce
inventory requirements; they must be repairable to
minimize the effect of the inevitable stockouts; and rapid
resupply of nonrepairable modules must be available on a
routine basis. This is not a matter of opinion or
engineering judgement. It is implicit in the mathematics.

Learning to do this is a subgoal of the Space Station
project, which is (in large part) intended to provide
experience in remote site base operation. Proper
attention to support factors of the same general type as
those considered in this report will result in a Space
Station which can be supported, and which will require
less ground support as it matures. The lessons learned in
Space Station operation will later be applied to design of
a Lunar Base, and lessons from the Lunar Base, in turn,
applied to a Manned Mars Mission. In this way, logistics
problems will be solved incrementally, in a timely and
effective manner, and the manned exploration of the Solar
System will continue at a steady pace, as foreseen in the
Report of the President's Commission on Space and in the

Ride report.

Further Work

First, analysis (3) should be carried out more

rigorously, providing some convenient way of predicting

behavior inventory levels for long missions when those for
short missions are known.

The repair hour hazards developed above are really

averages. Repair hour hazard is a function of time; it

will be higher towards the end of the mission, when

inventory is depleted, then it will be at mission start.

The only feasible ways of determining the repair hour

hazard distribution appears to be simulation. In extreme

cases, the repair activity might absorb all available crew

labor towards mission end. It would be useful to predict
and avoid that.

The existence of high failure rate parts should be

investigated further. Preliminary examination suggests

that there are surprisingly few such parts in the

STOCK2. STK data set, and that reliability improvement

would require significant MTBF increase over many part

types. For that matter, the effect of increasing MTBF is

not properly considered above. It will, obviously,

decrease inventory size, but will probably do so

nonlinearly. It would be interesting to attempt to

characterize the effect in the same way that commonality

has been considered above, so as to determine the probable

contribution of increased MTBF to reducing the logistics
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problem.

STOCK2 could be extended to accept more than 400 data
classes. It would be interesting to process the entire

data set and compare the results with those of Subset A.

Application of STOCK2 to data sets from other

equipment, such as planetary probes and modern commercial

aircraft, would provide some badly needed perspective on

inventory policy. Data from Antarctic bases, extended

Oceanographic expeditions, and industrial plants in

countries without a local industrial infrastructure might

provide a look at successful inventory policy.

Application of STOCK2 to the Hubble Space Telescope might

prove particularly interesting.

Failure while in inventory has not been explicitly

treated, as it is believed to be of negligible importance.

If it is important, some fraction of the modules in

inventory must be added to the population of modules

supported. For example, if MTBF in inventory is twice

that in service, than half of the modules in inventory

must be counted as in service. This operation produces a

convergent series, and one would expect the convergence to

be rapid. Note also that if some of the modules are in

active standby, possibly with automatic switchover, it may

be desirable to count them as inventory rather than as

running. The effect is to reduce the number of "running"

modules to the minimum required for station operation.

The risk. of course, is that one may find the inventory

exhausted with only one "necessary" module in a redundant

system running and half the mission to go. Obviously,

some difficult and real decisions about what is

"necessary" are called for before any such reduction can

be considered.

Specified probability of stockout is the only

independent variable in the current algorithm. It would

be convenient for some kinds of analyses to modify it so

as to accept number in stock as the independent variable,

and in others to modify it so as to accept number of

stockouts as the independent variable.

Optimization of the inventory under the following

conditions would be of interest, and has not been

addressed above:

* Partial resupply (perhaps by small ELV). Total

resupply is treated above as a shortened mission.

* Constrained availability of Criticality 1 modules.

* Repairability of only a subset of module types.

Characteristics of the inventory of replacement

components used in repair have not been considered.
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In addition to the above, there are related questions
concerning ground based logistics, which must have the
modules needed for restock available when needed, to
include rapid resupply missions. There is also the
question of proper techniques, tools, inventory, and so
on, used for on orbit module repair. The scope of these
questions is beyond what any one person could accomplish,
and are suggested as tasks for an organization.
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